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The problem is now to find a symmetric matrix L of 
Lagrange multipliers such that U is orthogonal. If both 
sides of (9) are multiplied by their transposed matrices, 
the unknown orthogonal matrix U can be eliminated: 

U(S + L)U(S + L) = (S + L)0 U(S + L) 
= (S+  L) (S+ L)=RR . (10) 

Since RR is a symmetric positive definite matrix the posi- 
tive eigenvalues/& and the corresponding eigenvectors ak 
can be found by well established procedures. Since S+  L 
is symmetric and positive definite also, it is evident from 
(10) that it must have the same normalized eigenvectors 
ak and the positive eigenvalues I/pk. 

It can be easily verified that the Lagrange multipliers are 
then 

l u = ~ l / l& aktakj- su (11) 
k 

where ak~ denotes the i th component of ak. The effect of 
the orthogonal matrix U on these eigenvectors ak is deter- 
mined from (9) and defines unit vectors bk as 

1 U(S + k)ak = 1 bk = U.  ak = i/#--- ~- - -~k Rak. (12) 

The orthogonal matrix U is finally constructed as 

uu = ~ bktakj (13) 
k 

and the problem to find the constraint minimum of the 
function E is solved. 

Sometimes it may happen that all of the vectors x, or y, 
lie in a plane. Then one of the eigenvalues of R'R, e.g. P3, 
will be zero. In this case a complete set of vectors ak, bk is 
constructed by setting 

a3 -= al x a2 b~ = bl x b2 • (14) 

Note that  the procedure described in this article can be 
easily extended to vector spaces of higher dimensions. 

It is possible also to replace the constraints of equation 
(2) by the more general constraints 

U U = M ,  (15) 

where M is a symmetric and positive definite matrix. If B 
is any specific solution of (15), it is easy to prove that all 
possible other solutions U of that equation can be written as 

U = V .  B (16) 

with an orthogonal matrix V. If the initial vector set x, is 
transformed into x~= Bx, then this problem is reduced to 
minimizing E'=½~w, (Vx ' , - y , , )  2 with the constraint 

VV= 1. 
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The packing of hyperspheres in more than three dimensions is discussed. 

Lifchitz (1976) has drawn attention to a type of lattice 
packing for hyperspheres in which there is one hypersphere 
per unit cell (at the origin) and where the unit cell has a 
metric matrix in which the diagonal elements are 1 and 
all other elements are ½. This matrix can be factorized into 
an upper triangular matrix and its transpose to obtain the 
orthonormal coordinates as required. 

This packing is, however, except for dimensions 1, 2 
and 3, by no means the closest packing of hyperspheres. 
The general solution remains unknown but the packing 
fraction for four-dimensional close-packing is ~z2/16 = 
0.61685 and corresponds to a hypercubic cell centred at 
(½,½,½,½) with 24 contacts per sphere. This is denser than 
the type of packing described by Lifchitz, which for four 
dimensions gi,,es the value rc2/(8x51/2)=0"55173 for the 

packing fraction and 20 contacts per sphere. Leech (1964) 
has given a table of what, up to that date, were believed to 
be the closest packings in up to 12 dimensions. The packing 
fraction for 12 dimensions exceeded by a factor of more 
than 8 that for the Lifchitz type of packing, and there are 
756 contacts per hypersphere as compared with 156. 

The French words 'assemblage compact '  might thus be 
better translated as 'close-ish packing' rather than as 
'close-packing'. 
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